CLUSTER UNIVERSITY SRINAGAR University Entrance Examination (50 x 1= 50 MARKS) Time One Hour Integrated Chemistry Note: Each wrong answer will lead to the deduction of 0.25 marks from the total score of the candidate. 1. The pH of 0.001M NaOH solution is A. 2 B. 3 C. 11 D. 14 2. The increasing order of acidity of oxides of chromium A. $CrO_3 < Cr_2O_3 < CrO$ B. $Cr_2O_3 \leq CrO \leq CrO_3$ C. $CrO_3 < CrO < Cr_2O_3$ D. $CrO < Cr_2O_3 < CrO_3$ 3. The most ionic halide is A. BiF₃ B. AsF₃ C. PBr₃ D. NCl₃ 4. The IUPAC name of $[Co(NH_3)_4Cl_2]Cl$ is A. tetramminodichloridocobalt(I)chloride. B. tetrachloridodiaraminecobalt(III)chloride. C. cobaltdichloridotetramminechloride. D. tetraamminedichloridocobalt(III)chloride. $\frac{\text{HBr/Peroxide}}{1.} \cdot Y' \text{ is}$ 5. For the reaction CH_3 -C=CH + HBr -×→ A. CH₃-CBr₂-CH₃ B. CH₃-CH₂-CHBr₂ C. CH₃-CHBr–CH₂Br D. CH₂Br-CH₂-CH₂Br 6. Which of the following can't give +vehaloform test. A. CH₃CH₂OH B. CH₃ - CH₂ - CHO C. CH₃ - CO - CH₃ D. CH₃ - CHOH-CH₃ 7. The IUPAC name of CH₃-CH-CH₂-CH₂-CH-CHO is Br OH A. 2-hydroxy-5-bromo-6-hexanal B. 2-hydroxy-5-bromo-5-pentanal C. l-bromo-4-hydroxypentanal D. 2-bromo-5-hydroxy-l-hxanal 8. Amides can be converted into primary amines by A. Hoffmann's bromomide reaction B. Sandmeyer's reaction C. Carbylamine reaction D. Dehydration reaction. 9. Which of the following does not undergo Cannizzaro reaction A. Chloral B. Formaldehyde C. Acetaldehyde D. Benzaldehyde 10. An organic compound decolourises alkaline KMnO₄& gives red ppt. with ammonical Cu_2Cl_2 , the compound is A. 2-butyne B. 2-butene C. propyne D. all of these 11. Which of the following is most volatile? C. HBr A. HF B. HCl D. HI

12.	$(n - 1)d^{10}ns^2$ is general ele	ctronic configu	ration for			
	A. Sc,Y,La	B. Fe,Co.Ni	С	. Cu,Ag,A	Au	D. Zn,Cd,Hg
13.	Which of the following id	on can show col	lour in aqu	ieous state	e?	
	A. Cu ⁺	B. Sc^{3+}	C. Ti ⁴⁺	D.	Co ³⁺	
14.	The oxidation state of iro	n in [Fe(H ₂ O) ₅]	NO]SO4 is	5		
	A. 0	B . 1	С	. 2		D. 3
15.	The following reaction c	an be an examp	ole of 3	X0- —		$XO_{3}^{-} + 2X^{-}$
	A. Reduction		В	. Oxidatio	on	
	C. Disproportionation		D	. Hydroly	/sis	
16.	Which of the following io	on has a pyrami	dal struct	ure?		
	A. NO ₃ ⁻	B. CO_3^{2-}	С	. CH ₃ ⁻		D. SO_4^{2-}
17.	CH ₃ - C≡CH + 2HC1—	$\longrightarrow X \xrightarrow{NaC}$	$\xrightarrow{\text{OH(aq)}}$ Y	-H2O	► Z. 'Z	Z' is
	A. Propylidene Chloride	B. Isopropyli	dene C	. Acetalde	ehyde	D. Acetone
18.	The conjugate base of NI	H_3 is?	a			
19.	A. NH ₄ B. NF Prussian blue is formed b	I_2^- by the reaction c	C. NH ² of Potassiu	m ferrocy	D. NI anide wit	H ₄ Cl h
	A. Cu^{2+} ions	B. Fe ³⁺ ions	С	. Cd ²⁺		D. Na ⁺ ions
20.	A substance which reacts	s with gangue to	o form fus	ible mate	rial which	floats at the molten
	metal is called					
	A. Ore	B. Flux	С	. Matte		D. Slag
21.	Mac-Arthur Forrest Cyar	nide process is	used for th	ne extracti	on of	-
	A. Cu	B. Au	С	. Cr		D. Al
22.	The correct statement reg	arding ZnO is				
	A. It is amphoteric		В	. It forms	ZnCl ₂ wi	th HCl
	C. It forms Na ₂ ZnO ₂ with	n NaOH	D	. All of th	nese	
23.	Zinc blende (ZnS) is cond	centrated by				
	A. Froth floatation proces	SS	В	. Magnet	ic separati	ion
	C. Leaching		D	. Washin	g with wa	ter
24.	The amount of NaCl, M	gCl ₂ & AlCl ₃ re	equired to	coagulate	e a fixed a	amount of As ₂ S ₃ sol
	vary in the order of					
	A. NaCl> MgCl ₂ > AlCl ₃		B. MaCl	$<$ MgCl ₂ \cdot	< AlCl ₃	
	C. NaCl> MgCl ₂ $<$ AlCl ₃	3	D. NaCl	MgCl ₂ >	AlCl ₃	
25.	In Caro's acid (H ₂ SO ₅), t	he oxidation sta	te of Sulp	hur is		
	A. +8	B. +6	С	. +4		D. None of these

- 26. The half life of zero order reaction is
 - A. directly proportional to initial concentration of reactants.
 - B. inversely proportional to initial concentration of reactants.
 - C. independent of initial concentration of reactants.
 - D. directly proportional to time.
- 27. For a chemical reaction X + 2Y → Products; Rate = k [X][Y]²
 If concentration of X is double & concentration of Y is halved, the rate of reaction becomes
 A. 8 times
 B. 1/2 times
 C. 1/4 times
 D. 2 times
 - A. 8 times B. 1/2 times C. 1/4 times D. 2 times

28. The acid hydrolysis of the following reaction is an example of

$CH_{3}COOC_{2}H_{5}(l) + H_{2}O(l)$	$\xrightarrow{H^{+}}$	$CH_3COOH(l) +$	$C_2H_4OH(l)$

- A. Firstorder reactionB. Second order reaction
- C. Pseudo-unimolecular reaction D. Pseudounimolecular 2nd order reaction
- 29. The heat of combustion of $CH_4(g)$ at constant volume is measured in a bomb calorimeter
 - at 298.2K and is found to be 885389 J mol⁻¹. The value of Δ H is
 - A. -890.348KJ mol⁻¹ B. -885.389KJ mol⁻¹
 - C. +890.348KJ mol⁻¹ D. +885.389KJ mol⁻¹

30. The halogen atoms having highest electron affinity and highest oxidizing power are

- A. Fluorine & ChlorineB. Bromine & Fluorine
- C. Chlorine & Fluorine D. Fluorine & Bromine
- 31. The number of moles of electrons taken up when one mole of NO₃⁻ ions is reduced to 1 mole of NH₂OH is
 - A. 2 B. 4 C. 6 D. 8

32. Which atom contains an electron with quantum numbers: n = 3, 1 = 2, m = 0, s = + 1/2

A. K B. Cl C. Ne D. Co

33. The total No. of orbitals in a shell having principal quantum No. 'n' is

A. n B. n + I C. n^2 D. $2n^2$

- 34. An alkene on treatment with hot alkaline KMnO₄ yields acetic acid &butanoic acid, the alkene is expected to be
- A. HexaneB. 3-hexeneC. 2-hexeneD. 2-methyl-2-hexene35. Orbital angular momentum for 'd' electron is
 - A. $\frac{h}{2\pi}\sqrt{6}$ B. $\frac{h}{\pi}\sqrt{2}$ C. $\frac{h}{\pi}\sqrt{8}$ D. $\frac{h}{2\pi}\sqrt{2}$

36.	$CH_3 - CH_2 - COOH \xrightarrow{Cl_2/Red P} CH_3 - CH$	Cl_2 – COOH. The reaction is called as		
	A. Wolf-Kishner reaction	3. Balz-Schiemann's reaction		
	C. Hell Volhard-Zelinksky (HVZ) reaction	D. Rosenmund's reaction		
37.	A group which deactivates benzene ring towards	electrophilic substitution but directs the		
	incoming group principally to the O- & p- positions is			
	AC ₂ H ₅ BCHO CCl	DNO ₂		
38. 39.	In Shottky defect the missing ion from the crysta A. cation B. anion C. bothcation & Base catalysedaldol condensation is not possible	lattice can be anion D. none of these with		
	A. Propionaldehyde	3. 2-Methylpropionaldehyde		
	C. 2,2-Dimethylpropionaldehyde	D. Acetaldehyde		
40.	Carmizzaro reaction is given by			
	A. Trimethylacetaldehyde B. Formaldehy	e C. Benzaldahyde D. All of these		
41.	An organic compound on passing over Cu at 30	O°C gives an alkene. The compound can		
	be			
	A. alkane B. alkene C. rectified spi	Tit D. tert. alcohol		
42.	What will be the e.m.f of the cell when the reduc	tion potential of half cells is		
	$Mg^{2+}(aq) + 2e^{-} - Mg(s); E^{\circ} = -2.37V$			
	$Cu^{2+}(aq) + 2e^{-} \longrightarrow$	$Cu(s)$; $E^{\circ} = +0.34V$		
	A. 2.7IV B. 2.03V C2.7	1V D2.03V		
43.	200 ml of 0.2M HCl is mixed with 300 ml of C	1M NaOH, the amount of heat released		
	can be			
	A. 57.1KJ mol ⁻¹ B. 1.71KJ mol ⁻¹ C. 5.71	4KJ mol ⁻¹ D. 11.2KJ mol ⁻¹		
44.	Which of the following solutions show highest b	iling point?		
	A. O.IM NaCl	3. O.IM $La_2(SO_4)_3$		
	C. O.IM BaCl ₂	D. All have same boiling point.		
45.	The amount of KCl needed for one Kg of water	so that its freezing point is depressed by		
	3K 15?			
16	A. 0.806 mol B. 1.62 mol C. 0.40	D D $2.43 mol$		
46.	A unimolar solution of each electrolyte like AgN	J_3 , Cu(NO ₃) ₂ , Mg(NO ₃) ₂ & Hg ₂ (NO ₃) ₂ 1s		
	being electrolysed by using inert electrodes. The	standard electrode potentials in volts are		
	Ag/Ag = $0.80V$, Mg/Mg ⁻¹ = $-2.3/V$, Cu/Cu ²	$= +0.34 \text{ V} \text{ & Hg/Hg}^{-} = +0.79 \text{ V} \text{ W1th}$		
	increasing voltage, the sequence of deposition of	metals on the cathode will be ${HCl}$		
	A. Mg, Cu, Hg, Ag B. Ag, Hg, Cu, Mg	L. Ag, Hg, Cu D. Cu, Hg, Ag		

47. Bordeaux mixture is

C. $CuSO_4 + CaO$ A. $CuSO_4$ soln. + lime B. $CuSO_4$ + C D. CuSO₄ alone H⁺/H₂O 300K $\xrightarrow{\text{NaNO}_2/\text{HCl}} X$ 48. Identify 'Y' in the following reaction $C_6H_5NH_2$ – Y B. C₆H₅OH A. C_6H_5Cl C. $C_6H_5N_2Cl$ D. C₆H₅NHO 49. Which of the following relation is correct for electron affinity of a halogen 'X'? A. $X_2(g) + 2e^- \longrightarrow 2X^-(g)$ B. $\frac{1}{2} X(q) + e^{-} \longrightarrow$ $X^{-}(g)$ C. $\frac{1}{2} X(g) + e^{-} \longrightarrow X(g)$ D. $X(g) + e^{-} \longrightarrow$ $X^{-}(g)$ 50. The increasing order of acidity in CH₄, NH₃, H₂O & HF is A. $CH_4 \leq NH_3 \leq H_2O \leq HF$ B. $NH_3 \leq CH_4 \leq H_2O \leq HF$ C. $NH_3 \le H_2O \le CH_4 \le HF$ D. $H_2O \le NH_3 \le CH_4 \le HF$

KI	E	Y
	_	_

1	3	26	1
2	4	27	2
3	1	28	3
4	4	29	1
5	3	30	3
6	2	31	3
7	4	32	4
8	1	33	3
9	3	34	3
10	3	35	1
11	2	36	3
12	4	37	3
13	4	38	3
14	2	39	3
15	3	40	4
16	3	41	4
17	4	42	1
18	2	43	2
19	2	44	2
20	2	45	1
21	2	46	3
22	4	47	1
23	1	48	2
24	1	49	4
25	2	50	1