

CLUSTER UNIVERSITY SRINAGAR

SYLLABUS (FYUP UNDER NEP 2020)

Offered By Department Of MATHEMATICS

Semester 1st (**Minor Course**)

Course Title: Calculus-I

Course Code: UGMTH22N101

Credits: 4 (Theory: 3, Tutorial: 1)

Contact Hrs: 60

Max. Marks 100

External: 75; Min Marks: 30

Internal (Continuous Assessment): 25 Marks, Min Marks: 10

Course objectives/Outcome:

After the completion of this course, the students shall be able to:

- 1. Understand continuity and differentiability of a function.
- 2. Find tangent/normal of a curve, curvature and radius of curvature of a function.
- 3. Find the expansion of various functions.
- 4. Understand indeterminate forms, homogeneous functions and partial differentiation.

Unit I

Functions of one variable, limit and continuity of a function (ε - δ Definition), properties of continuous functions on closed and bounded intervals, classification of discontinuities. Successive differentiation, nth derivatives of $(ax + b)^n$, $\sin(ax + b)$, $\cos(ax + b)$, $\log(ax + b)$, $e^{ax}\sin(bx + c)$, $e^{ax}\cos(bx + c)$. Successive differentiation using method of partial fractions, Leibnitz's theorem.

Unit II

Tangents and normals (polar coordinates only), angle between radius vector and tangent, perpendicular from pole to tangent, angle of intersection of two curves, polar tangent, polar normal, polar sub-tangent, polar sub-normal. Curvature and radius of curvature of a function at a point, asymptotes, asymptotes parallel to the axes, oblique asymptotes of nth degree curve, singular points, classification of double points.

Unit III

Roll's theorem, Mean value theorems and their geometrical interpretations, Taylor's theorem with Lagrange's and Cauchy's forms of remainders, Taylor's series, Maclaurin's series of $\sin x$, $\cos x$, e^x , $\log(1+x)$, $(1+x)^n$.

Unit -IV

Indeterminate forms, Partial differentiation, total differentiation, Homogenous functions, Euler's theorem on homogenous functions. Some problems on Euler's theorem.

Text Books Recommended:

- (1) Differential Calculus by S.D. Chopra, M.L.Kochar & A. Aziz-ul-Auzeem, KapoorPublications.
- (2) Calculus and Analytic Geometry by G.B. Thomas, R. L. Finny Pearson Education.
- (3) T. M. Apostol: Calculus, John Willey and Sons, New York.
- (4) S. Lang: A First Course in Calculus, Addison Wesley Publishing Co., Philippines.